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MINTMUM FUEL ORBITAL TRANSFERS

(Coaxial, Coplanar, Elliptic Oribts. Unlimited Transfer Time.)

SUMMARY

The following study constitutes one of the rare examples for which the
application of Pontryagin's "Maximum Principle" to an orbital transfer problem
permits attainment of the optimal solution in a closed form.

The elements of the Keplerian osculating orbit have been chosen as state
co-ordinates because these elements remain constant on the ballistic arcs. The
equations of motion during powered flight then coincide with the perturbation
formulas concerning the elements of the Keplerian osculating orbit.

When the calculation gives several solutions at the same time, 1%t is
necessary to make a direct computation to determine the best one and to
eliminate the unwanted ones, because the "Maximum Principle"” is only a necessary
condition for optimality in the case of a non-linear system.

PRINCIPAL NOTATTONS

A = apogee

cs = constants

E = thrust

F = |7l

m = mass of the moving body

5 = adJjoint vector

P = perigee

v =' velocity of the moving body
Vcar = characteristic velocity

VZ,x = reduced characteristic velocity
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v = +true anomaly

x = "state" vector
y = "control" vector
W = agngle between the tangent and the local horizontal

¥y = angle of the thrust with the local horizontal

¢ = characteristic velocity measured from the initial time

I. INTRODUCTION

The study will be limited to the following problem: One wishes to ac-
complish a minimum fuel transfer (minimum of propellants without regard to the
duration) in the gravity field created by a single center of attraction (Fig. 1).
The transfer is between 2 Keplerian orbits (0) and (F) which are coplanar
ellipses in which the axes' directions are not assigned.

Fig. 1.

IT. FORMULATION OF PONTRYAGIN

One adopts Pontryagin's formulation such as it was shown, for example, in
Refs. 1, 2, and 3.

II.1. STATE

At each moment (t) the state of the moving body M will be characterized by
the state vector:



Xy = h
XB =
Xg =

o]

where E = 4V° - 4/r and h = rV cosw

are respectively, the energy and the angular momentum of the Keplerian orbit,
which is the osculating ellipse¥* at the time (t), and

t
= [Ege_ [T dm
¢ jo.mdt—-—_/r'nOW(m)—m—zo

is the characteristic velocity "consumed from the time of departure.”

E and h perfectly define the orbital state E; of the moving body M. They
are sufficient to determine the "osculating" orbit. (Neither the position on
this orbit nor the orientation of the axis have to be taken into account.)

The speed of ejection W(m) was supposed to be a known function of instantaneous
mass of the moving body. Since ¢ is representative of the consumed mass, it can
serve as a meagsure Of the expense of the maneuver up to the time (t), independent
of staging considerations (Ref. 4).

IT.2. CONTROL

The control vector § is made up of the components:

Vi =V
y Yo =V
Va = F/Fmax(m)

In effect, the choice of the direction of thrust is arbitrary. The choice
of the point on the osculating orbit where the thrust is applied 1s equally
arbitrary because the durgtion of the transfer does not enter into the calculation.
One can walt on the osculating orbit until the return to optimal conditions
for the thrust to be applied again.

On the other hand, it is supposed that the magnitude of thrust is variable,
but limited by the following constraint: O £ y; = 1.

¥ That is to say, the Keplerian orbit which would be described by M if,
from that instant one suppresses the thrust F. It is easy to show that
it ought to be found in the plane of (0) and (F).



IT.3. EQUATIONS OF MOTION

_ The equations concerning the "geometry" of the transfer are analogous to
the formulas of perturbations of the elements in a Keplerian orbit.

(3) & r

a - gl-cosgll
(&) % = VE cos (Y —w)

The equation concerning the fuel consumption is written:

d¢ _
(5)—€~

ol
B |

These equations remain verified if one multiplies the linear dimensions by
the scale factor X, and the time by the factor A2 Then the velocitiles
(including the characteristic velocity ¢) are multiplied by X "*, E by X',
and h by )\”2, which preserves the shape parameter e (eccentricity of the osculating
orbit) which only depends on the product Eh®.

Expenditures of characteristic velocity in the inverse proportion of the
square root of the scale factor correspond to similar transfers. The study of
such transfers can be reduced to the study of any one among them.

The duration of the transfer was not assigned. Let us take ¢ as a variable
in place of t. The equations (3), (4) and (5) are then written:

6) « = 2v/x p cosy, _

: | + ecosys, fL&xy)

(1) %, = V/;—
p

[cos y, + ecos (y, + yz)] = f,(X,¥)

() X, =1=1,GH wih ( ) = g%

where p (semi-latus rectum of the osculating orbit) and e depend on %, and Xp.

2
(9) p= =4

Y2 Y
(10) e = (1 + 2i22> = (t v Buke "2>
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The problem consists then of choosing in which manner the control y should

be applied to pass from the given initial orbital state, xg , to the final given

. orbital state, xg , in the most economical manner. That is to say, such that:

3
(11) §=2 cixiley) = x;(¢¢) = by
is minimal (Fig. 2).

Fig. 2. Trajectory in the plane x; X
X,=E
W

¢ is the characteristic velocity of the mission, V., ...

The problem is of the "minimum time" type, Ref. 2, the role of the time
being played here by ¢ .

IT.4. ADJOINT VECTOR

Let us define an adjoint wvector 5 of which the components p; must satisfy
the equations:

3

(12) p, = -3 p, s (i =1,2,3)
s=t - 0x;

the f, being the right hand sides of the equations (6), (7) and (8).



IT.5. MAXIMUM PRINCIPLE

From the above considerations the maximum principle of Pontryagin is expressed
as follows: The "optimal trajectory" is obtained by integrating the differential
system: (6) and (7), and (8) and (12), with unknowns X and P, in which the

control vector, ¥, has been chosen such that at each instant the generalized
Hamiltonian:

. 3
(13) H = p-x' = Zpifi =ﬁ;[p ZPCOS yi +

]
| +ecosy,

-%2 (cos y, + e cos(y, + Yz))] + Ps

is an absolute maximum with respect to yy, Yz, ¥Va.

The boundary conditions are:

x,(0) = x® x ) = x!
(1) | %100 = x9 (15) |x,lpg) =t
x3{0) = 0 Palp) =-c, = -1

(¢] o ? £ .
where X, , X3, X, Xp are given,

The supplementary equation: H(¢,) = O then determines ¢, .

ITI. OPTIMAL CONTROL

IIT.1.

H does not contain yz. It is maximal with respect to y; and y, for y; =0
or m, yo = 0 or m. That is:

cosy, = €= |, cosy, =€, =%

That signifies that the thrust is applied only at the perigee (P) or at the
apogee (A) of the osculating orbit, in the direction of the velocity or in the

opposite direction. The anmbiguity in sign is removed by the absolute maximum
condition on H with respect to €, and €,.

An immediate consequence of this result is that the application of the thrust




has to be discontinuous and impulsive¥, After having applied the thrust at the
bperigee, for example, it is necessary to coast, in purely ballistic flight on
~the osculating orbit, to the perigee (or apogee) in order to apply the thrust
again. Moreover, this thrust can only be applied during an infinitely short
interval dt, in order not to depart from the conditions of the optimum.

It should be noted that we do not dbtain any information about ys, that is
on the magnitude F of F. This is due to the fact that the duration of the transfer
does not enter the equation. Every value F = Fpax 1s suitable during dt.

If Fox 1s not infinite, the transfer takes place in an infinite time with
an infinite number of infinitely small impulses, dI = Pdt. This is also true in
taking F = F o« (Fig. 3.2). The trace of the motion then appears continuous in
the plane %, x5 (Fig., 2). If Fpgx 1s infinite, one can perform the transfer in
a finite time by finite impulses, I = Fpgoxdt (Fig. 3.1). The trace of the motion

is then described by Jjumps in the x,, Xz plane.

Fig, 3.--1. Foax = W, Finite duration
2. Fmax limited. Infinity of impulses, infinite duration.

Q&

In practice, Fyox is not infinite and it is necessary to perform the transfer
in a finite time. This is accomplished by adopting a solution neighboring the
above —defined optimum, that is, to apply the thrust during a finite interwval,

At. With At fixed, the number of impulses (consequently the duration of the
transfer) will then be rendered minimal if one chooses F = Fy .

Further on, when we speak of transfer by one, two or three impulses, we
will assume implicity that Fp,. is infinite. Thus, iIf it is not, it will be
necessary to replace egch impulse by an Infinity of infinitely small Impulses
applied at the proper point.

¥ We will see in § VI.3 that the spiral trajectory solution with infinitesimal
impulses applied over an infinite number of revolutions, such that the
osculating orbit is always a circle (y; = y» = 0), is not locally optimal.



IIT.2. CHOICE OF €, AND €5,

Inserting the values y3 = 0 or 7, y, = O or 7 in (13) the Hamiltonian becomes

(16) H= \/x_,®2€, + p,

with @, = —2PP_ , Pz

[ +ee,).
| + e€, °c,)

We must choose €, and

€5 in such a way that H is an absolute maximum at each
instant. As €, can be chosen equal to & 1

, | ®, | must be rendered a maximum
with respect to €5,

Let us introduce the reduced variables:

Xy P
X| = /:? =T =1| + e€2
Xy = X
(17) 2 (__&) (> 0 for an ellipse)
2r
y = 2,2P (accounts for the orientation of the

P, vector P)

In these equations, r = p/(1 + e€p) =r, (or ry) = radius of the perigee
or of the apogee of the osculating orbit. (The apsis radius, r, stays constant
during a phase where €, keeps a constant sign:

for example, after an impulse
at the perigee P, the same.point P would be passed after a revolution.)

Then €, = + 1 depending on whether l@zl€2=H 2 I®2|€2=-. that is to say:

2 <
xl

2 |
() 6 - (v ) 20
2

®; is a switching function. The thrusting point depends on its sign.

Once €, is chosen, €; = % depending on whether:

(199 @, =%fw+nzo



®, is a second switching function. On its sign depends the direction in
which thrust is applied.

To study the sign of @, and ®5 it is necessary to integrate the equations
of motion in which ¥ has been replaced by ?opt.

IV. INTEGRATION OF THE EQUATIONS--OPTIMAL ARC

For a determined phase (interval during which €
the equations (6), (7), (8), and (12) are written:

x|, = 2% re,
(20) X', = [)L;—GJ-

5 keeps a constant sign)

x'y = |

-p, = > J— (p,+ 2r%p,) + J—e.ez (2rp, = p,)
(21) _p, = ‘/—6'62 (p, = 2r%p,)

_py =0

where r 1s a constant.
These equations can be integrated to give the form of the optimal arc in
the space (x,p). .

Iv.1,

In particular, the projection in the plane x,, x5 (or X, X,) is

is, for the
initial phase:
]
(22)  x, — x¢ = 5'Ez—"tcr Xs = Xg = = (X, =X}
or again Xp— | = —(X;—1)

Equation (22) shows that the trajectory in the plane x;, % (or X;, X, ) is a

straight line, each of the ellipses having the same radius of perigee (or apogee)
as (0).



Figures 4 and 5 show in detail the properties of the planes %, and X, a
X;, X5. Having been given an ellipse (O), all the elllpses having the same

~radius of perigee as (0) are situated on the segment CPPO tangent at Cp to the
hyperbola

Likewise, all the elllpses having the same radius of apogee as (O) are situated
on the segment Sh CA, tangent to the same hyperbola at Cp (5).

The optimal initial flight follows one of these segments.

Fig. 4. Properties of the plane E, 4.

x, h Hyperbolas ¢>1
W R, Parabolas e-1 A, X
. pJ.P1 2l‘-"p° u,;o zu_rAc
; Ellipses  fe«t
2"° O
A g A\\\\%\\
Circles
e
2y 2x, x
(554 § e 1+ 1°2=-0
Y NS ¥
2rp° -
®
-—[59
I‘: P ==
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Fig. 5. Properties of the plane %, X5.
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Iv.2.

Likewise the projection of the optimal arc in the plane X;, Y is:

|1+ X3Y |1+ XY
(23) 'r) = = |
_ VX L+ Y, ,/xl [ +Y

This equation is important, because it permits the study of the commutations.
(Y enters in the switching functions, ®; , and ®z ). The optimal arc in X, Y
depends only on one parameter, 7 , which is a function of the initial conditions.

The fact that the two initial values, p, and ps (unknown a priori), are
reduced to one single unknown parameter, Y (or m ), can be accounted for by
the homogeneous character of Equations (12) relative to p, and p;. In effect,
the coefficients of ps in these equations are zero because f; and fp do not
contain ¢ . Moreover, since fz also does not contain ¢, the system is con-
servative. Then, H = constant, and since H ( 4>f) =0, H= 0. Applying this
relationship for ¢ = 0, one obtains: H(x}, x3, py, pa) = O which shows well
that 1} and py are not independent.

il

The. form of the optimal arc ¥ = Y(X;) is indicated in Fig. 6.
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Fig. 6. The optimal arc and the points of commutation.

X,

1
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Xy
OPTIMAL ARC

V. STUDY OF THE COMMUTATIONS (SWITCHES)

From Equations (18) and (22) one deduces that the frontier curves (@, = 0)

are expressed by:

(25) Y =¢

These curves are shown 1n Figs. 6, T, and 8.

It is easy to demonstrate that the hatched zones of Fig. 8 are prohibited,
and to eliminate the hyperbolic zone (X; > 2) for an economic transfer between

two ellipses.



When, in the course of following an optimal arc, a point M, N or R (Fig. 6)
is reached, there is a commutation. That is, €5 changes sign. The parameter
. r then changes character (rp~*rA) and it 1s necessary to set out from another
point M, N or R situated on the curves of commutation. In doing this the con=-
tinuity of the state variables x; and X, and of the adjoint variables p;, and pg
must be taken into consideration. It can be deduced that only the commutations
M-—N and R=—R are allowed, thereby eliminating the commutations M-/~R and
N-/=R.

Ht

Fig., 7. Commutation curves e=+1
sz—f
+1
CZ=I; +2 Cz==+1 X1
I >
L
-1 Q
Cz.:—’
€=-—1

4 T Cz= -1
Fig. 8. Permitted zones \
N
N \Q§§§§

\
+1§§§§;f§' \§§§§§§§§§§§§§§§§§§§S&e&s~




Crossing the point Q (circularization) is not optimal. It is possible to

show by direct calculation that the path K,MNK, is more economical than the
. path K, CK, (Fig. 10).

When the optimal arc passes through L, there is a double commutation,
beginning again from the same point L, but in the opposite direction.

The loci of the points M, N, R as functions of  are given in Fig. 9.

Fig. 9. Loci of the commutation points.
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Fig. 10.

Hohmann transfer (Case a).
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VI. TRANSFERS BETWEEN CIRCULAR ORBITS
~VI.1l. APPLICATION OF THE MAXIMUM PRINCIPLE--EXTREMAL SOLUTIONS.

Leaving a circle (0) and following an optimal arc, one necessarily ends at
a circle (F) after a commutation (Hohmann transfer (a) Fig. 10), 2 commutations
(case (b) Fig. 11), or a double commutation (case (c) Fig. 12).

The solution (c) is always extremal.

Fig. 11. Transfer by 3 impulses (case b)

2
(0)
® (F)
viyr*
N
A-
+1
© +114 ’1 - Xy
RIS }
..1 0 A— mm—
R F
s
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Fig. 12. Passage through infinity(bi-parabolic)(case c).

Xz\
(42]
i
A—-
+1
© +1|ANN\L X
A +2
ol -
-1 7

The solution (a) is only locally extremal if it is possible to join N to
F without a new commutation of the type R (Fig. 11). That is, if:

0.2 < X\ < 1 (fig 9.

L7



Since X = 2/(1 + p) (Fig. 5) with p = ry /r,, this condition is written

1< p< 156

One could also show that the solution (b) is only extremal for 9 < p < 15.6
and an exactly determined value of r.

These results are summarized in Fig. 13.
Fig. 13. Extremal solutions (Pontryagin).
a = Hohmann (2 impulses)

b = 3 impulses — local max.
¢ = 3 impulses of which one is at infinity

(1./2r ?

1 18 188 oK
W
o —————
1 (p=9)

Note that for certain values of p, several solutions coexist. To determine
the optimum and eliminate the other solutions, it is necessary to compare these
solutions. A direct calculation is the only means of selecting the optimum,

Vi.2. DIRECT CALCULATION

Putting py = r/r; (where r is defined in Fig. 11), the characteristic
velocities required for the different solutions, normalized by the cilrcular
orbital velocity on the final orbit, are: ’

¢f/(t)) _____ﬂ(ppz _ l)pz-uz (ppg ¥ l)-uz +J-ép2-|/z (pz + l)uz _ puz -1
v/ Te

18



(c) corresponds to case p; —— therefore:

¢ lcC)
A TAL

(a) corresponds to the case pj

¢la)

= (VZ =10 +p")

1l therefore:

N =-/§(p-INP+|PQ-.#Q+l

(Hohmann transfer)

The variations of required characteristic velocity as a function of py for
different values of p are shown in Fig. 15.

It is immediately evident that

the solution (b) for 9 < p < 15.6 and the

solution (c) for 1 < p < 9 are parasitic solutions because they correspond to
local maxima. One finds them nevertheless, in applying the maximum principle,
because this principle 1s only a necessary condition of optimality for non-

linear systems.¥

Comparisons of the solutions (a) and (c) show that: (a) is more economical
than (c¢) for 1L < p < 11.94; (a) is less economical than (c) for p > 11.94.

Fig. 14, "Optimorum" optimum (direct calculation).

X2
k25 W 1

P
L

18 185 188 7 o %

)

(P=15

¥ A linear system would be of

(p156 k0

) o)

3
the form: xi=f;X V)= 2‘035(4)))(5 + bily, ) (i=1,2,3)
S=
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Fig. 15. Transfers of type b.
LU0 15,6
O
2MS—_____ p=156
2 e 11.94<P<15.6

=11,94

pras

1.58

1

20/2- 1):0828

For p > 15.6 the solution (a) is not a local optimum (confirming the results
deduced from the application of the Maximum Principle, Fig. 13).

One can find a three impulse transfer (b), infinitely close to the Hohmann
transfer (a), which is more economical than the latter (Fig. 16).

Fig. 16.
b)

p+
(F)

1
|
|
i
, |
p=11

! =2

! e b
]

p=L

| 2

I } Bi— parabolic

a) Hohmann |
!
%

1
.
%

a) Transfer a, (Hohmann).
Transfer b

~

20

a, more economical than a for p = %L > 15.6



For 11.9% < p < 15.6, every transfer by 3 impulses (b) corresponding to
P > py (Fig. 15) is more economical than the Hohmann transfer (a), although not
. constituting a local maximum. However, it corresponds to an acceptable physical
maneuver, when the solution (c) has no physical significance because it remires
infinite duration.

The results of this discussion are in Pig. 1k.
VI.3,., SPIRAL

The path 6? (Fig. 18) on the hyperbolas whose equation is:

in the plane X, , X, corresponds to solution (d), a spiral with an infinite
number of revolutions. This solution is not optimal. It is sufficient to con-
sider it as the limit of the polygonal path 0C;, Co.....Cp, = F (Fig. 17) when
n—® (chattering solution), which is not optimal because of the circularizations
at C4 C5.ee...Cimy . One can demonstrate that the corresponding characteristic
velocity required is:

¢>f(d) _ Vo"‘Vf _ a2 _
v/ Vs P

Fig., 17. Polygonal contour 0C;Cs;.....F less economical than OKF,
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Fig. 18. Spiral (n = revolutions) OF less economical than OKF.

X,
0 X
Loy
K F | pt
+f
+1 +§//"”——————;;
w i !
-7 2
| pt
0

VI.4., CONCIUSION

We have traced, Fig. 19, the variations of characteristic velocity (or V.gp)
as a function of p = 1y /r, > 1 in terms of the velocity onthe circular orbit of

departure V ;... (ro) = /u/ro for the solutions: (a) Hohmann), (c) bi-parabolic,
(4) spiral.

Although (c) is theoretically preferable to (a) for p < 11.94 the difference
remains small. The Hohmann transfer is now, in general, the solution to adopt
Values of p greater than 11. 9L are not often observed in practice. For
circumterrestrial orbits we recall that, in order to transfer a satellite on g
low orbit into a synchronous orbit, p = (42000 km/6700 km) =~ 6.3 < 11.9%, Like-
wise, for interplanetary transfers toward the superior planets of the solar
system, only Uranus, Neptune and Pluto are such that p > 11.94, For the latter
planets, one cannot consider the solution (c) (infinite duration). The solution
of the type (b) (with p, > ps¥), although slightly better than the Hohmann
transfer (a) (but less economical than solution (c) ) presents the disadvantages
of complexity (3 impulses in place of 2) and of increased duration, for a
rather small savings compared to the Hohmann solution.

22



Fig. 19. Comparison of the modes of transfer between 2 circles
(1imited duration).

clele

@Hotmann ~ © Bi-parabolic @ Spiral
A* P+ A* Bt A {Infinite number of revolutions)

1.0}

081
§ Mercury
L Venus 15,6
%1 & Eorm 0.533 (max)
0.4} C! Mars __._..__._2‘_7_._____»
¥ Jupiter ar= oo — - ﬁ_}
ire (M) .8 km/s
o2k b Saturn etre for e-—-planet /
Urenus (S }
0 A S ¥
o1 10 rf 10

The spiral solution (d) is always less economical than the Hohmann. The
ratio ¢, (a)/ ¢,(a) increases from 1 to 1/{ /2 - 1) = 2.41 when p increases
from 1 to infinity. Even for low thrust systems 1t is better to adopt the
solution consisting of short, successive periods of thrust, at perigee and ~
apogee of the osculating orbit (Fig. 3.2), rather than a solution of the spiral
type, if the transfer duration’ is neglected.

The case where p = rf/ro < 1 (transfer toward the inferior planets, for
example) is deduced simply from the case p > 1. If the characteristic speed
is always related to circular speed on the departure orbit (V.ipe(r,)), it
ig sufficient to interpret l/p > 1 as the abscissa in Fig. 19, and to multiply
the result read from the ordinate by 1/ vp > 1 (this is in accordance with
the remarks of §II.3 concerning similar transfers).

One obtaing then the curves (p < 1) of Fig. 12, which show particularly
that transfers toward the inferior planets are more difficult to realize than
the transfers toward the superior planets. For example, the Hohmann transfer
toward Mercury (p = 0.39), for which the reduced characteristic speed is equal
to 0.57, is already more difficult to realize than any Hohmann transfer
toward a superlor planet.

23



VII. TRANSFER BETWEEN ELLIPTIC ORBITS

Consider now a transfer between two ellipses (0) and (F) (Fig. 20). The
only transfers permitted are, in view of the previous amnalysis, OKF (Fig. 21)
and OK3K,F (Fig. 22) which are part of the optimal paths between circles:
CoKCE and C8K,K,Ch .

Fig. 20.

Fig. 21.

ol



Fig., 22,

If 1 < rf/rd <9, the path CEKFCi is surely more economical than the path
CzKiKng. It is sufficient, in Fig. 15, to take p = ;p/rp and pg, = rA/rp.
Omitting from these paths the common parts CPO and FCp, one deduces that OKF
is more economical than 0Ky K F, whatever ra and T, are. If (rp /T ) > 11.9k,
analogous reasoning shows that COKyKoF is more economical than OKF, whatever
r%y and rf are. On the contrary, if 9 < (rb/rp) < 11.94, OKF is more economical
than OK;K,F only for p, = (ri/rs) < P2 ** (Fig. 15). When P increases from 9
to 11.94 pp ¥¥% decreases from ps ¥¥ =@ to Py *¥ = 1,

In conclusion, studying the optima reveals that only the 2 perigee radii,
r; and rg, enter into consideration when their ratio, p > 1, is between 1 and
9, or when p is greater than 11.9%. When p is between 9 and 11.94 the greatest
radius of apogee must be accounted for, as explained in the text. It is suf-
ficient then to put p; = (greater radius of apogee/greater radius of perigee)
and to consider its position with respect to pg¥*¥.

VIIT. GENERAL CONCIUSION

Application of the Pontryagin Maximum Principle permits the selection of
extremal solutions and, in particular, determination of the number¥ and points
of application of the impulses.

A direct calculation is necessary in order to eliminate the parasitic
solutions and to find the "optimal optimum."

In the case of transfers between circles, the Hohmann (bi-tangential,
half-ellipse) is most economical when the ratio of the radii is less than 11.9k,
It is beneficial therefore, for most circumterrestrial and interplanetary

* Most of the studiles of multi-impulse transfers suppose, a priori, s
fixed number of impulses at one's disposal [6].
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transfers. When the ratio of the radii is greater than 11.94%, the solution
consists of establishing a parabolic branch by the first impulse, returning on
- another parabolic branch after a second, infinitely small impulse applied at
infinity, and finally, establishing the final circular orbit by a third impulse
at the perigee. This transfer is theoretically more economical than the
Hohmann (several %), but the duration is infinite.

In practice, it is possible to adopt a solution, not locally optimal, for
which the second impulse is applied at a finite distance and not at infinity.
But the economy rea lized in proportion to the Hohmgnn solution is very small.

In the solar system, the transfer from the terrestrial orbit toward the
superior planets which necessitates the greatest expense is theoretically
that which corresponds to a radius ratio of 11.9%, that is, to an orbit situated
between those of Saturn and Uranus. On the contrary, toward the inferior planets
the expense always increases proportionately as the final orbit approaches the
sun, The transfer toward an inferior planet is more difficult than the transfer
toward a superior planet for the same radius ratio. '

The case of transfer between two ellipses of the same major axis is easily
deduced from the study of the transfers between circular orbits. Here again, it
is necessary to choose between the Hohmann solution and the bi-parabolic solution.
The latter can, in certain cases, represent a very important saving, in contrast
to the small saving attainable in the circular case.

It is important to recall that all the preceding results suppose that the

duration of the transfer does not come into play, and that these results will be
profoundly modified when this is not the case,
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